14,740 research outputs found

    Spin state transition in LaCoO3 by variational cluster approximation

    Full text link
    The variational cluster approximation is applied to the calculation of thermodynamical quantities and single-particle spectra of LaCoO3. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase of the occupation of high-spin Co3+ ions causes the temperature dependence of entropy and magnetic susceptibility. The single particle spectral function agrees well with experiment, the experimentally observed temperature dependence of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies with experiment highlight the importance of spin orbit coupling and local lattice relaxation.Comment: Revtex file with 10 eps figure

    Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms

    Full text link
    Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.Comment: 21 pages, 5 figure

    Kondo resonance line-shape of magnetic adatoms on decoupling layers

    Full text link
    The zero-bias resonance in the dI/dV tunneling spectrum recorded using a scanning tunneling microscope above a spin-1/2 magnetic adatom (such as Ti) adsorbed on a decoupling layer on metal surface can be accurately fitted using the universal spectral function of the Kondo impurity model both at zero field and at finite external magnetic field. Excellent agreement is found both for the asymptotic low-energy part and for the high-energy logarithmic tails of the Kondo resonance. For finite magnetic field, the nonlinear fitting procedure consists in repeatedly solving the impurity model for different Zeeman energies in order to obtain accurate spectral functions which are compared with the experimental dI/dV curves. The experimental results at zero field are sufficiently restraining to enable an unprecedented reliability in the determination of the Kondo temperature, while at finite fields the results are more ambiguous and two different interpretations are proposed

    Correlated band structure of NiO, CoO and MnO by variational cluster approximation

    Full text link
    The variational cluster approximation proposed by Potthoff is applied to the calculation of the single-particle spectral function of the transition metal oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a TMO6-cluster. The single-particle parameters of this cluster serve as variational parameters to construct a stationary point of the grand potential of the lattice system. The stationary point is found by a crossover procedure which allows to go continuously from an array of disconnected clusters to the lattice system. The self-energy is found to contain irrelevant degrees of freedom which have marginal impact on the grand potential and which need to be excluded to obtain meaningful results. The obtained spectral functions are in good agreement with experimental data.Comment: 14 pages, 17 figure

    Endohedral Impurities in Carbon Nanotubes

    Full text link
    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Treating the distortion within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value gc_c. The effective potential in the symmetry-broken state is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally-doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.Comment: 4 pages, 2 figure

    Environmental testing of block 2 solar cell modules

    Get PDF
    The testing procedures and results of samples of the LSA Project Block 2 procurement of silicon solar cell modules are described. Block 2 was the second large scale procurement of silicon solar cell modules made by the JPL Low-cost Solar Array Project with deliveries in 1977 and early 1978. The results showed that the Block 2 modules were greatly improved over Block 1 modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run

    Advanced double layer capacitors

    Get PDF
    Work was conducted that could lead to a high energy density electrochemical capacitor, completely free of liquid electrolyte. A three-dimensional RuO sub x-ionomer composite structure has been successfully formed and appears to provide an ionomer ionic linkage throughout the composite structure. Capacitance values of approximately 0.6 F/sq cm were obtained compared with 1 F/sq cm when a liquid electrolyte is used with the same configuration

    Magnetic excitations in the spin-trimer compounds Ca3Cu3-xNix(PO4)4 (x=0,1,2)

    Full text link
    Inelastic neutron scattering experiments were performed for the spin-trimer compounds Ca3Cu3-xNix(PO4)4 (x=0,1,2) in order to study the dynamic magnetic properties. The observed excitations can be associated with transitions between the low-lying electronic states of linear Cu-Cu-Cu, Cu-Cu-Ni, and Ni-Cu-Ni trimers which are the basic constituents of the title compounds. The exchange interactions within the trimers are well described by the Heisenberg model with dominant antiferromagnetic nearest-neighbor interactions J. For x=0 we find JCu-Cu=-4.74(2) meV which is enhanced for x=1 to JCu-Cu=-4.92(6) meV. For x=1 and x=2 we find JCu-Ni=-0.85(10) meV and an axial single-ion anisotropy parameter DNi=-0.7(1) meV. While the x=0 and x=1 compounds do not exhibit long-range magnetic ordering down to 1 K, the x=2 compound shows antiferromagnetic ordering below TN=20 K, which is compatible with the molecular-field parameter 0.63(12) meV derived by neutron spectroscopy.Comment: 22 pages (double spacing), 1 table, 9 figures, Submitted to Phys. Rev. B (2007
    • …
    corecore